Product Description

MIC NO OEM.NO APPLICATION YEAR PHOTO
TB34PG9301 957726
082990
9642929880
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.1 i (MAHDZ, MBHDZ, MBHFX)        
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.4 bivalent        
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.4 i (MBKFX, MBKFW)        
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.4 i bivalent (MBKFW)        
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.1 i (MFHDZ, MFHFX)        
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 bivalent        
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 i (MFKFX, MFKFW, GJKFWB, GJKFWC, GFKFWC)        
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 i bivalent (MFKFW)        
CITROEN  C2 (JM_) 1.1        
CITROEN  C2 (JM_) 1.4        
CITROEN  C3 I (FC_, FN_) 1.1 i        
CITROEN  C3 I (FC_, FN_) 1.4 i        
CITROEN  C3 I (FC_, FN_) 1.4 i Bivalent        
CITROEN  C3 II (SC_) 1.1 i        
CITROEN  C3 II (SC_) 1.4        
CITROEN  C3 Pluriel (HB_) 1.4        
CITROEN  NEMO Box (AA_) 1.4        
CITROEN  NEMO Estate 1.4        
CITROEN  SAXO (S0, S1) 1.1 X,SX        
CITROEN  XSARA (N1) 1.4 i        
CITROEN  XSARA Break (N2) 1.4 i        
CITROEN  XSARA Coupe (N0) 1.4 i        
FIAT  FIORINO Box Body/Estate (225_) 1.4 (225BXA1A, 225BXF1A)        
FIAT  QUBO (225_) 1.4 (225AXA1A)        
PEUGEOT  1007 (KM_) 1.4        
PEUGEOT  106 II (1A_, 1C_) 1.1 i        
PEUGEOT  206 Hatchback (2A/C) 1.1        
PEUGEOT  206 Hatchback (2A/C) 1.1 i        
PEUGEOT  206 Hatchback (2A/C) 1.4 i        
PEUGEOT  206 Hatchback (2A/C) 1.4 LPG        
PEUGEOT  206 Saloon 1.4        
PEUGEOT  206 SW (2E/K) 1.1        
PEUGEOT  206 SW (2E/K) 1.4        
PEUGEOT  206+ (2L_, 2M_) 1.1        
PEUGEOT  206+ (2L_, 2M_) 1.4 i        
PEUGEOT  207 (WA_, WC_) 1.4        
PEUGEOT  207 SW (WK_) 1.4        
PEUGEOT  306 (7B, N3, N5) 1.1        
PEUGEOT  306 (7B, N3, N5) 1.4 SL        
PEUGEOT  306 Break (7E, N3, N5) 1.4        
PEUGEOT  306 Hatchback (7A, 7C, N3, N5) 1.1        
PEUGEOT  307 (3A/C) 1.4        
PEUGEOT  BIPPER (AA_) 1.4        
PEUGEOT  BIPPER Tepee 1.4        
PEUGEOT  PARTNER Box (5_, G_) 1.1        
PEUGEOT  PARTNER Box (5_, G_) 1.4        
PEUGEOT  PARTNER Box (5_, G_) 1.4 BiFuel        
PEUGEOT  PARTNER Combispace (5_, G_) 1.1        
PEUGEOT  PARTNER Combispace (5_, G_) 1.4
1996-2008
2002-2011
1996-2011
2003-2005
1996-2008
2002-2011
1996-2011
2003-2008
2003-2012
2003-2009
2002-
2002-2571
2002-
2009-2013
2009-2016
2003-
2008-
2009-
1996-2003
1997-2005
1997-2005
1998-2005
2007-
2008-
2005-
1996-2004
1998-2000
1998-2007
1998-2012
2006-2007
2007-
2002-
2002-2007
2009-2013
2009-2013
2006-2013
2007-2012
1994-2001
1994-2001
1997-2002
1993-2001
2000-2003
2008-
2008-
1996-2005
1996-2015
2003-2006
1996-2002
1996-2015

  

 

 

After-sales Service: Online Technical Support
Warranty: One year
Car Make: CITROEN

Samples:
US$ 15/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pulley

What safety considerations should be kept in mind when working with V pulleys?

Working with V pulleys involves certain safety considerations to ensure the well-being of individuals and the proper functioning of the equipment. Here are some important safety considerations to keep in mind:

1. Proper Guarding:

Ensure that V pulleys are adequately guarded to prevent accidental contact with moving parts. Guards should be in place to cover the pulleys and belts, minimizing the risk of entanglement, pinch points, or injuries caused by rotating components. Follow industry standards and regulations for guarding requirements and regularly inspect and maintain the guards to ensure their effectiveness.

2. Lockout/Tagout Procedures:

Before performing any maintenance or inspection tasks on equipment with V pulleys, implement proper lockout/tagout procedures. Lockout/tagout involves isolating the power source, de-energizing the equipment, and securing it with locks or tags to prevent accidental startup. This procedure ensures that the equipment remains in a safe and inoperable state during maintenance activities.

3. Personal Protective Equipment (PPE):

Wear appropriate personal protective equipment when working with V pulleys. This may include safety goggles or glasses to protect the eyes from flying debris, gloves to prevent hand injuries, and appropriate clothing to minimize the risk of entanglement. The specific PPE requirements may vary depending on the nature of the task, the environment, and local safety regulations.

4. Training and Education:

Ensure that personnel working with V pulleys receive appropriate training and education on safe operating procedures, maintenance practices, and emergency response protocols. Training should cover topics such as hazard awareness, proper use of equipment, lockout/tagout procedures, and the importance of following safety guidelines. Regular refresher training sessions can help reinforce safe practices and address any new safety concerns.

5. Inspection and Maintenance:

Regularly inspect V pulleys for signs of wear, damage, or misalignment. Pay attention to the condition of the belts, pulley grooves, and tensioning mechanisms. Maintain proper belt tension as per manufacturer recommendations to prevent slippage and ensure efficient power transmission. Promptly address any issues identified during inspections and conduct routine maintenance tasks to keep the pulleys in good working condition.

6. Load and Speed Limits:

Adhere to the load and speed limits specified by the manufacturer for the V pulleys and associated components. Exceeding these limits can lead to belt slippage, decreased efficiency, and potential equipment failure. Ensure that the V pulleys are selected and installed correctly based on the specific application requirements to avoid overloading or operating at excessive speeds.

7. Risk Assessment:

Conduct a comprehensive risk assessment of the work area and equipment to identify potential hazards related to V pulleys. Assess risks associated with installation, operation, maintenance, and emergency situations. Implement appropriate control measures to mitigate the identified risks and regularly review and update the risk assessment as needed.

It is essential to prioritize safety when working with V pulleys. By following these safety considerations and any additional guidelines provided by the equipment manufacturer, the risks associated with V pulley operations can be minimized, ensuring a safe working environment for all personnel involved.

pulley

How do V pulleys affect the performance of lawn and garden equipment?

V pulleys have a significant impact on the performance of lawn and garden equipment by providing power transmission and controlling the speed and torque of various components. Here’s a detailed explanation of how V pulleys affect the performance of lawn and garden equipment:

1. Drive System:

V pulleys are commonly used as part of the drive system in lawn and garden equipment. The driving pulley, often connected to the engine or motor, transfers rotational power to the driven pulley, which is connected to the equipment’s cutting blades, wheels, or other moving parts. The design and size of the V pulleys determine the speed and torque delivered to the equipment.

2. Speed Control:

V pulleys allow for speed control in lawn and garden equipment. By using pulleys of different sizes, the speed ratio between the engine or motor and the driven components can be adjusted. This enables the equipment operator to regulate the speed at which the blades rotate or the wheels turn, ensuring optimal performance for different tasks and terrain conditions.

3. Torque Transfer:

The design of V pulleys allows for efficient transfer of torque from the engine or motor to the driven components. The V-shaped groove in the pulleys, along with the corresponding V-belt, provides excellent grip and traction, preventing slippage and ensuring maximum power transfer. This enables the equipment to handle heavier loads, such as cutting through thick grass or tilling soil.

4. Belt Selection:

The selection of the appropriate V-belt is crucial for optimizing the performance of lawn and garden equipment. Different types of V-belts, such as classical V-belts or cogged V-belts, offer varying levels of flexibility, load capacity, and resistance to heat and wear. Choosing the right belt ensures efficient power transmission and extends the lifespan of the pulleys and belts.

5. Pulley Size and Design:

The size and design of V pulleys impact the performance of lawn and garden equipment. Larger pulleys can provide higher torque and slower blade or wheel speed, making them suitable for heavy-duty tasks. Smaller pulleys, on the other hand, allow for faster speed and lower torque, ideal for lighter cutting or moving applications. The groove profile and depth of the pulleys also play a role in belt engagement and grip, affecting power transmission efficiency.

6. Durability and Maintenance:

V pulleys used in lawn and garden equipment are typically constructed from durable materials such as steel or cast iron to withstand the demands of outdoor use, including exposure to moisture, debris, and vibrations. Regular maintenance, including inspection, cleaning, and occasional belt replacement, is necessary to ensure the continued performance and longevity of the V pulley system.

Overall, V pulleys significantly influence the performance of lawn and garden equipment by enabling efficient power transmission, speed control, and torque transfer. The selection of the right pulleys and belts, along with proper maintenance, ensures optimal performance, durability, and reliability of the equipment in various landscaping and gardening applications.

pulley

What are the primary components and design features of a V pulley?

A V pulley, also known as a V-belt pulley or sheave, consists of several primary components and design features that enable its functionality. Here’s an explanation of the primary components and design features of a V pulley:

1. Body:

The body of a V pulley is the main structural component. It is typically made of metal, such as cast iron or steel, to provide strength and durability. The body is designed to support the V-belt and transmit power from the driving source to the driven component. It may have a solid construction or be split into two halves for easy installation or replacement.

2. Groove:

The groove is a key design feature of a V pulley. It is a V-shaped channel or groove that runs along the outer circumference of the pulley. The groove is specifically designed to accommodate the V-belt with a corresponding trapezoidal cross-section. The V shape of the groove enhances the grip between the pulley and the belt, ensuring efficient power transmission and reducing the risk of slippage.

3. Diameter:

The diameter of a V pulley refers to the distance across its outer circumference. It plays a crucial role in determining the speed ratio and torque transmission of the power transmission system. By changing the diameter of the pulley, different speed ratios can be achieved between the driving source and the driven component. Larger pulley diameters generally result in higher belt speeds and lower torque, while smaller diameters lead to slower belt speeds and higher torque.

4. Number of Grooves:

V pulleys can have a single groove or multiple grooves, depending on the specific application. The number of grooves corresponds to the number of V-belts used in the power transmission system. Multiple grooves allow for the simultaneous power transmission to multiple driven components, such as in systems with multiple accessories or pulleys in automotive engines.

5. Tapered or Straight Design:

V pulleys can have a tapered or straight design, depending on the requirements of the application. Tapered pulleys are wider at one end and narrower at the other, allowing for easier belt installation and improved belt tracking. Straight pulleys have a consistent width along their entire circumference and are commonly used in applications where belt tracking is not a significant concern.

6. Surface Finish:

The surface finish of a V pulley is important for optimizing the performance and lifespan of the V-belt. The pulley’s surface should be smooth and free from any roughness or irregularities that could cause excessive belt wear or damage. Proper surface finish ensures proper belt contact, reduces friction, and enhances the overall efficiency of the power transmission system.

7. Mounting Mechanism:

V pulleys are mounted on shafts or bearings using various mounting mechanisms, such as set screws, bolts, or keyways. The mounting mechanism ensures secure and reliable attachment of the pulley to the rotating shaft, allowing for the transmission of rotational motion and torque.

By considering these primary components and design features, engineers can select and design V pulleys that are suitable for specific applications, ensuring efficient power transmission and reliable operation in mechanical systems.

China Custom Whosale Auto Spare Parts/ Timing Belt Tensioner Pulley/ Car Accessories /OEM  957726   pulley and belt	China Custom Whosale Auto Spare Parts/ Timing Belt Tensioner Pulley/ Car Accessories /OEM  957726   pulley and belt
editor by CX

2023-11-29